Передача данных в сетях. Передача данных и виды связи Спутниковые каналы передачи данных

Я рассказывал о цифровых сигналах. Чем же так хороши эти цифровые сигналы? Как это бы странно не звучало, но цифровые сигналы по своей природе являются аналоговыми, так как передаются путем изменения значения напряжения или тока, но передают сигналы с ранее оговоренными уровнями. По своей сути, они являются дискретными сигналами. А что означает слово “дискретный”? Дискретный – это значит состоящий из отдельных частей, раздельный, прерывистый. Цифровые сигналы относятся как раз к дискретным сигналам, так как имеют только ДВА СОСТОЯНИЯ: «активно» и «не активно» - «есть напряжение/ток» и «нет напряжения/тока».

Главный плюс цифровых сигналов в том, что их проще передавать и обрабатывать. Для передачи чаще всего используют напряжение. Поэтому, принято два состояния: напряжение близко к нулю (менее 10% от значения напряжения) и напряжение близко к напряжению питания (более 65% от значения). Например, при напряжении питания схемы 5 Вольт мы получаем сигнал с напряжением 0,5 Вольт - «ноль», если же 4,1 Вольта - «единица».

Последовательный метод передачи информации

Есть просто два провода, источник электрического сигнала и приемник электрического сигнала, которые цепляются к этим проводам.

Это ФИЗИЧЕСКИЙ УРОВЕНЬ.

Как мы уже сказали, по этим двум проводам мы можем передавать только два сигнала: «есть напряжение/ток» и «нет напряжения/тока». Какие способы передачи информации мы можем реализовать?

Самый простой способ – сигнал есть (лампочка горит) – это ЕДИНИЧКА, сигнала нет (лампочка не горит) – это НОЛЬ


Если пораскинуть мозгами, можно придумать еще несколько различных комбинаций. Например, широкий импульс принять за единичку, а узкий – за ноль:


Или даже вообще взять за единичку и ноль фронт и срез импульса. Внизу рисунок, если подзабыли, что такое фронт и срез импульса.


А вот и практическая реализация:


Да можно хоть сколько придумать различных комбинаций, если “получатель” и “отправитель” согласуют прием и передачу . Здесь я привел просто самые популярные способы передачи цифрового сигнала. То есть все эти способы и есть ПРОТОКОЛЫ. И их, как я уже сказал, можно напридумывать очень много.

Скорость обмена данными

Представьте себе картину… Студенты, идет лекция… Преподаватель диктует лекцию, а студенты ее записывают


Но если преподаватель очень быстро диктует лекцию и в придачу эта лекция по физике или матанализу, то в результате получаем:


Почему же так произошло?

С точки зрения цифровой передачи данных, можно сказать, что скорость обмена данными между «Отправителем» и «Получателем» разная. Поэтому, может быть реальна ситуация, когда «Получатель» (студент) не в состоянии принять данные от «Отправителя» (преподавателя) из-за несоответствия скорости передачи данных: скорость передачи может быть выше или ниже той, на которую настроен приемник (студент).

Данная проблема в разных стандартах последовательной передачи данных решается по-разному:

  • предварительная договоренность о скорости передачи данных (договориться с преподавателем, чтобы диктовал лекцию медленнее или чуть быстрее);
  • перед передачей информации «Отправитель» передает некую служебную информацию, используя которую «Получатель» подстраивается под «Отправителя» (Преподаватель: “Кто не запишет эту лекцию полностью, тот не получит зачет”)

Чаще всего, используется первый способ: в устройствах связи заранее устанавливается необходимая скорость обмена данными. Для этого используется тактовый генератор, который вырабатывает импульсы для синхронизации всех узлов устройства, а также для синхронизации процесса связи между устройствами.

Управление потоком

Также возможна ситуация, когда «Получатель»(студент) не готов принимать передаваемые «Отправителем»(преподавателем) данные по какой-либо причине: занятость, неисправность и др.


Решается эта проблема различными методами:

1) На уровне протоколов . Например, в протоколе обмена оговорено: после передачи «Отправителем» служебного сигнала «начало передачи данных» в течение определенного времени «Получатель» обязан подтвердить принятие этого сигнала путем передачи специального служебного сигнала «готовность к приему». Данный способ называют «программным управлением потоком» – «Soft»


2) На физическом уровне - используются дополнительные каналы связи, по которым «Отправитель» ДО передачи информации запрашивает у «Получателя» о его готовности к приему). Такой способ называют «аппаратным управлением потоком» – «Hard»;


Оба метода очень распространены. Иногда они используются одновременно: и на физическом уровне, и на уровне протокола обмена.

При передаче информации важно засинхронизировать работу передатчика и приемника . Способ установки режима связи между устройствами называют «синхронизацией». Только в этом случае «Получатель» может правильно (достоверно) принять переданное «Отправителем» сообщение.

Режимы связи

Симплексная связь.

В этом случае Получатель может только принимать сигналы от отправителя и никак не может на него повлиять. Это в основном телевидение или радио. Мы можем их только или смотреть или слушать.


Полудуплексная связь.

В этом режиме и отправитель и получатель могут передавать друг другу сигналы поочередно, если канал свободен. Отличный пример полудуплексной связи – это рации. Если оба абонента будут трещать каждый в свою рацию одновременно, то никто никого не услышит.

– Первый, первый. Я второй. Как слышно?

– Слышу вас нормально, отбой!


Сигнал может посылать только отправитель, в этом случае получатель его принимает. Либо сигнал может отправлять получатель, а в этом случае отправитель его получает. То есть и отправитель и получатель имеют равные права на доступ к каналу (линии связи). Если они сразу оба будут передавать сигнал в линию, то, как я уже сказал, ничего из этого не получится.

Дуплексная связь.

В этом режиме и прием и передача сигнала могут вестись сразу в двух направлениях одновременно . Яркий тому пример – разговор по мобильному или домашнему телефону, или разговор в Skype.


Предположим, что кто-то из наших друзей решил позвонить своей бабушке в Санкт-Петербург. Он поднимает телефонную трубку, набирает номер и ждет, когда бабушка ответит. Как только она берет трубку, между нею и нашим другом устанавливается прямая телефонная связь, которая поддерживается до тех пор, пока один из собеседников не положит трубку. Посторонний в их разговор вмешаться не может. Они болтают, пока не надоест, так что можно сказать на какое-то время линия принадлежит только человеку, живущему в Москве, и его петербургской бабушке.

В Internet дело обстоит иначе. Никто не занимает канал единолично, пусть даже ненадолго. По одному и тому же каналу движется вперемежку самая разная информация, которая передается в виде пакетов данных. В эти упаковки она «раскладывается» сразу при отправлении: все сообщении «разрезаются на кусочки» и так пересылаются получателю. По каналам Internet одновременно мчится множество таких пакетов, и всякий новый вливается в этот поток. В момент доставки адресату разрозненные фрагменты, словно детали головоломки, снова складываются в единое целое.

Если бы телефон работал по тому же принципу, что и Internet, наш друг и его бабушка замучились бы беседовать друг с другом. Друг произносил бы фразу, а то и пару слов, и долго ждал бы, пока его сообщение дойдет до бабушки. Ее ответ добирался бы до него с таким же запозданием. Конечно, обычный телефонный разговор протекает совсем не так: мы общаемся, как если бы собеседник был рядом с нами. И все же с помощью Internet можно звонить по телефону!

А пока продолжим о самом принципе передачи информации в Интернете. Пакет данных, который пересылается по Internet, может содержать не более 1500 знаков. Чтобы такой пакет не попал мимо цели, он содержит поле адреса, в котором указаны такие необходимые сведения, как имя пакета, его позиция в блоке передаваемых данных и инструкции о последующих действиях. Благодаря наличию этой информации из поступивших к получателю пакетов данных и складывается сообщение. Занимаются этим так называемые протоколы.
Главный протокол в Internet - TCP/IP.

Вообще говоря, это два разных протокола. С одной стороны, это межсетевой IP (Internet Protocol), задача которого - правильно адресовать пакет данных. Межсетевой протокол представляет собой что-то вроде почтового конверта, на котором указаны адреса получателя и отправителя. Когда пакет попадает в сеть, перед каждым очередным ответвлением информационной магистрали (маршрута передачи данных) он останавливается. Система изучает его адрес, после чего пакет продолжает движение. Путь его не всегда прямой: он направляется всякий раз туда, где нет «пробок». Поэтому сообщение, посланное, скажем, из Парижа в Берлин, может добираться через Японию или США. В Internet отсутствует понятие «занято». Если линия загружена, сообщение мчится окольным путем. В этом заключается огромное преимущество Internet перед другими средствами связи. Даже если где-нибудь на линии случится обрыв, информация все равно дойдет до адресата.

Другую функцию выполняет TCP (Transmission Control Protokol). Этот протокол используется для «упаковки» данных в пакеты. Как только все они дойдут до получателя, протокол TCP опять собирает из них сообщение. Сделать это помогают особые пометки, которыми снабжены пакеты данных. Это сведения о размере общего массива данных, количестве пакетов и о последовательности, в которой их предстоит собирать.

Протокол TCP/IP помогает передавать данные. Он налаживает обмен информацией между различными компьютерными системами. Бывает и так, что замкнутая локальная сеть не работает с протоколом TCP/IP. Однако и из нее можно выйти в Internet: через шлюз (gateway) - специальный компьютер, который обеспечивает обмен данными между разными сетями. Такой шлюз переводит информацию с языка протокола TCP/IP на язык локальной сети, после чего передает ее соответствующему компьютеру.

Например, если вы хотите послать по Internet электронное письмо пользователю онлайновой службы CompuServe, ваше сообщение неминуемо пройдет через шлюз этой сети. Он придаст вашему посланию формат, принятый в сети CompuServe, и ваш адресат без труда прочтет его. Точно так же он сам может отправить послание в локальную сеть, использующую другой протокол.

В России многопротокольный доступ к сети впервые предложила компания Совам Телепорт.
В наше время многие крупные фирмы заводят собственные локальные сети, чтобы обеспечить связь между сотрудниками на рабочих местах и различными филиалами данного предприятия. Их называют корпоративные сети, или intranet-сети.

Создаются они в соответствии с техническими стандартами всемирной сети, и компьютеры, подключенные к таким внутренним сетям, имеют возможность доступа в Internet.

Некоторые коммерческие онлайновые службы - например, Microsoft Network (MSN) - тоже используют технологию Internet, будучи тем самым составной частью всемирной компьютерной сети.

Используя ресурсы Интернет, найти ответы на вопросы:

Задание 1

1. Что представляет из себя процесс передачи информации?

Передача информации - физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:


2. Общая схема передачи информации

3. Перечислите известные вам каналы связи

Канал связи (англ. channel, data line ) - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

По типу среды распространения каналы связи делятся на:

4. Что такое телекоммуникации и компьютерные телекоммуникации?

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть
- это система технических средств, посредством которой осуществляются телекоммуникации.

К телекоммуникационным сетям относятся:
1. Компьютерные сети (для передачи данных)
2. Телефонные сети (передача голосовой информации)
3. Радиосети (передача голосовой информации - широковещательные услуги)
4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

Передача информации с компьютера на компьютер называется синхронной связью, а через промежуточную ЭВМ, позволяющую накапливать сообщения и передавать их на персональные компьютеры по мере запроса пользователем, - асинхронной.

Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

5. Что такое пропускная способность канала передачи информации?
Пропускная способность - метрическая характеристика , показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма) в единицу времени через канал, систему, узел.
В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.
Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Скорость передачи информации зависит в значительной степени от скорости её создания (производительности источника), способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

, оптическое волокно , беспроводные каналы связи или запоминающее устройство .

Передача данных может быть аналоговой или цифровой (то есть поток двоичных сигналов), а также модулирован посредством аналоговой модуляции, либо посредством цифрового кодирования.

Хотя аналоговая связь является передачей постоянно меняющегося цифрового сигнала, цифровая связь является непрерывной передачей сообщений. Сообщения представляют собой либо последовательность импульсов, означающую линейный код (в полосе пропускания), либо ограничивается набором непрерывно меняющейся формы волны, используя метод цифровой модуляции . Такой способ модуляции и соответствующая ему демодуляция осуществляются модемным оборудованием.

Передаваемые данные могут быть цифровыми сообщениями, идущими из источника данных, например, из компьютера или от клавиатуры. Это может быть и аналоговый сигнал - телефонный звонок или видеосигнал, оцифрованный в битовый поток, используя импульсно-кодирующую модуляцию (PCM) или более расширенные схемы кодирования источника (аналого-цифровое преобразование и сжатие данных). Кодирование источника и декодирование осуществляется кодеком или кодирующим оборудованием.

Последовательная и параллельная передача

Параллельной передачей в телекоммуникациях называется одновременная передача элементов сигнала одного символа или другого объекта данных. В цифровой связи параллельной передачей называется одновременная передача соответствующих элементов сигнала по двум или большему числу путям. Используя множество электрических проводов можно передавать несколько бит одновременно, что позволяет достичь более высоких скоростей передачи, чем при последовательной передаче. Этот метод применяется внутри компьютера, например, во внутренних шинах данных , а иногда и во внешних устройствах, таких, как принтеры . Основной проблемой при этом является «перекос», потому что провода при параллельной передаче имеют немного разные свойства (не специально), поэтому некоторые биты могут прибыть раньше других, что может повредить сообщение. Бит чётности может способствовать сокращению ошибок. Тем не менее электрический провод при параллельной передаче данных менее надёжен на больших расстояниях, поскольку передача нарушается с гораздо более высокой вероятностью.

Типы каналов связи

  • Симплекс
  • Многоточечная:

См. также

  • GSM-терминал

Ссылки


Wikimedia Foundation . 2010 .

  • Передача Новикова
  • Передача сигнала (биология)

Смотреть что такое "Передача данных" в других словарях:

    Передача данных - в широком смысле процесс передачи данных по каналу связи от источника к приемнику. Различают синхронную и асинхронную передачу данных. По английски: Data communications См. также: Передача данных Информационные взаимодействия Данные Финансовый… … Финансовый словарь

    ПЕРЕДАЧА ДАННЫХ Современная энциклопедия

    ПЕРЕДАЧА ДАННЫХ - (телекодовая связь) область электросвязи, охватывающая вопросы передачи информации, представленной в формализованном виде (напр., знаками) и предназначенной для обработки ее электронно вычислительной машиной или уже обработанной ими. Передачу… … Большой Энциклопедический словарь

    Передача данных - ПЕРЕДАЧА ДАННЫХ, пересылка кодированной информации (данных) по линиям проводной, оптической или радиосвязи между несколькими взаимодействующими электронными вычислительными машинами либо между электронными вычислительными машинами и… … Иллюстрированный энциклопедический словарь

    передача данных - Пересылка данных при помощи средств связи из одного места для приема их в другом месте. [ГОСТ 24402 88] Тематики телеобработка данных и вычислительные сети EN data broadcastingdata communicationdata communicationsdata transfersdata… … Справочник технического переводчика

    передача данных - 01.02.16 передача данных [ data transmission]: Передача данных из одного пункта в один или несколько пунктов с помощью средств электросвязи. Источник … Словарь-справочник терминов нормативно-технической документации

    Передача данных - (иногда телекодовая связь) область электросвязи (См. Электросвязь), имеющая целью передачу информации, представленной на основе заранее установленных правил в формализованном виде знаками или непрерывными функциями и предназначенной для… … Большая советская энциклопедия

    передача данных - передача дискретной информации (данных), представленной в формализованном виде (например, знаками), от их источника к потребителю между двумя и более ЭВМ, между ЭВМ и пользователями в автоматических и автоматизированных системах управления, в… … Энциклопедический словарь

    передача данных - duomenų perdavimas statusas T sritis automatika atitikmenys: angl. data transmission vok. Datenübertragung, f rus. передача данных, f pranc. transmission de données, f; transmission des données, f … Automatikos terminų žodynas

    ПЕРЕДАЧА ДАННЫХ - передача дискретной информации (данных), представленной в фор мализов. виде (напр., знаками), от их источника к потребителю между двумя и более ЭВМ, между ЭВМ и пользователями в автоматич. и автоматизир. системах управления, в информац., вычислит … Естествознание. Энциклопедический словарь

Книги

  • Программируемая передача данных в сетях ЭВМ , Тихомиров Дмитрий Леонидович. Рассмотрены средства, обеспечивающие программируемую передачу данных (ПД) в сетях ЭВМ. Оптимизированы и синтезированы интерфейсы нижнего уровня (канальные интерфейсы). Разработана архитектура…

Благодаря прогрессу мы получили множество облегчающих нашу жизнь устройств и приборов, которые функционируют за счет изобретения новых технологий. Прорывом в области связи стала не только передача информации по беспроводному каналу, но и синхронизация различного рода устройств при отсутствии проводного соединения.

Что такое беспроводная передача данных?

Ответить на этот вопрос просто: БПД - это перенос информации от одного устройства к другому, которые находятся на определенном расстоянии, без участия проводного подключения.

Технология передачи голосовой информации по радиоканалу стала применяться еще в конце XIX в. С тех пор появилось большое количество радиокоммуникационных систем, которые стали использовать при производстве оборудования для дома, офиса или предприятий.

Существует несколько способов синхронизации устройств для осуществления передачи данных. Каждый из них используется в определенной области и обладает индивидуальными свойствами. Беспроводные сети передачи данных отличаются своими характеристиками, поэтому минимальное и максимальное расстояние между устройствами, в зависимости от вида технологии передачи информации, будет различно.

Для синхронизации устройств по радиоканалу устанавливаются специальные адаптеры, которые способны отправлять и получать информацию. Здесь речь может идти как о небольшом модуле, который встраивается в смартфон, так и об орбитальном спутнике. Приемником и передатчиком могут быть разные виды устройств. Передача осуществляется посредством каналов разных частот и диапазонов. Остановимся подробнее на специфике осуществления разных видов беспроводной синхронизации.

Классификация беспроводных каналов

В зависимости от природы передающей среды различают четыре типа беспроводной передачи данных.

Радиоканалы сотовой связи

Передача данных осуществляется беспроводным путем от передатчика к приемнику. Передатчик формирует радиоимпульс определенной частоты и амплитуды, колебание излучается в пространство. Приемник фильтрует и обрабатывает сигнал, после этого происходит извлечение нужной информации. Радиоволны частично поглощаются атмосферой, поэтому такая связь может искажаться при повышенной влажности или дожде. Мобильная связь работает именно на основе радиоволновых стандартов, каналы беспроводной передачи данных отличаются скоростью передачи информации и диапазоном рабочих частот. К радиочастотной категории передачи данных относится Bluetooth - технология беспроводного обмена данными между устройствами. В России используются следующие протоколы:

  • GSM. Это глобальная система осуществления сотовой связи. Частота - 900/1800 мГц, максимальная скорость передачи данных - 270 Кбит/с.
  • CDMA. Данный стандарт обеспечивает наилучшее качество связи. Рабочая частота - 450 МГц.
  • UMTS. Имеет две рабочие полосы частот: 1885-2012 МГц и 2110-2200 МГц.

Спутниковые каналы

Этот способ передачи информации заключается в использовании спутника, на котором установлена антенна со специальным оборудованием. Сигнал поступает от абонента на ближайшую наземную станцию, затем осуществляется переадресация сигнала на спутник. Оттуда информация отправляется на приемник, другую наземную станцию. Спутниковая связь используется для обеспечения телевидения и радиовещания. Спутниковым телефоном можно воспользоваться в любой отдаленной от станций сотовой связи точке.

Инфракрасные каналы

Связь устанавливается между приемником и передатчиком, которые находятся на близком расстоянии друг от друга. Такой канал для беспроводной передачи данных работает посредством светодиодного излучения. Связь может быть двусторонней или широковещательной.

Лазерные каналы

Принцип действия такой же, как в предыдущем варианте, только вместо светодиодов используется лазерный луч. Объекты должны находиться в непосредственной близости друг от друга.

Беспроводные среды передачи данных различаются своей спецификой. Главными отличительными чертами являются дальность действия и область применения.

Технологии и стандарты беспроводной передачи данных

Информационные технологии в настоящее время развиваются быстрыми темпами. Передавать информацию теперь можно при помощи радиоволн, инфракрасного или лазерного излучения. Такой способ обмена информацией намного удобнее, чем проводной вид синхронизации. Дальность действия при этом, в зависимости от технологии, будет отличаться.

Приведем примеры:

  • Персональные сети (WPAN). При помощи этих стандартов подключается периферийное оборудование. Использовать беспроводные компьютерные мыши и клавиатуры намного удобнее по сравнению с проводными аналогами. Скорость беспроводной передачи данных достаточно высокая. Персональные сети позволяют оборудовать системы умных домов, синхронизировать беспроводные аксессуары с гаджетами. Примерами технологий, работающих при помощи персональных сетей, являются Bluetooth и ZigBee.
  • Локальные сети (WLAN) базируются на продуктах стандартов 802.11. Термин Wi-Fi в настоящее время известен каждому. Изначально это название было дано продуктам серии стандарта 802.11, а теперь этим термином обозначают продукты любого стандарта из данного семейства. Сети WLAN способны создавать больший рабочий радиус по сравнению с WPAN, повысился и уровень защиты.
  • Сети городского масштаба (WMAN). Такие сети работают по тому же принципу, что и Wi-Fi. Отличительной особенностью данной системы беспроводной передачи данных является более широкий обхват территорий, подключиться к данной сети может большее число приемников. WMAN - это тот же Wi Max, технология, которая предоставляет широкополосное подсоединение.
  • Глобальные сети (WWAN) - GPRS, EDGE, HSPA, LTE. Сети этого типа могут работать на основе пакетной передачи данных или посредством коммутации каналов.

Отличия в технических характеристиках сетей определяют область их применения. Если рассматривать общие свойства беспроводных сетей, тогда можно выделить следующие категории:

  • корпоративные сети - используются для связи объектов внутри одной компании;
  • операторские сети - создаются операторами связи для оказания услуг.

Если рассматривать протоколы беспроводной передачи данных, тогда можно выделить следующие категории:

  1. IEEE 802.11a, b, n, g, y. Данные протоколы принято объединять под общим маркетинговым названием Wi-Fi. Различаются протоколы дальностью действия связи, диапазоном рабочих частот и скоростью передачи данных.
  2. IEEE 802.15.1. В рамках стандарта осуществляется передача данных по технологии Bluetooth.
  3. IEEE 802.15.4. Стандарт для беспроводной синхронизации посредством технологии ZigBee.
  4. IEEE 802.16. Стандарт телекоммуникационной которая отличается широкой дальностью действия. WiMax функционально схожа с технологией LTE.

В настоящее время наибольшей популярностью из всех беспроводных протоколов передачи данных пользуются 802.11 и 802.15.1. На базе этих протоколов осуществляется действие технологий Wi-Fi и Bluetooth.

Bluetooth

Точкой доступа, как в случае с Wi-Fi, может выступать любое устройство, оснащенное специальным контроллером, который формирует вокруг себя пикосеть. В данную пикосеть могут входить несколько устройств, при желании они могут быть объединены в мосты для передачи данных.

В некоторых компьютерах и ноутбуках уже встроен контроллер Bluetooth, если данная функция отсутствует, тогда используются USB-адаптеры, которые подсоединяются к аппарату и наделяют его возможностью беспроводной передачи данных.

Bluetooth использует частоту 2,4 ГГц, потребление энергии при этом максимально низкое. Именно этот показатель позволил технологии занять свою нишу в области информационных технологий. Небольшое потребление энергии объясняется слабой мощностью передатчика, небольшой дальностью действия и низкой скоростью передачи данных. Несмотря на это, данных характеристик оказалось достаточно для подключения и функционирования различного рода периферийного оборудования. Технология Bluetooth предоставила нам большое разнообразие беспроводных аксессуаров: наушники, колонки, компьютерные мыши, клавиатуры и многое другое.

  • 1-й класс. Дальность действия беспроводной синхронизации может достигать 100 м. Устройства такого типа используют, как правило, в промышленных масштабах.
  • 2-й класс. Радиус действия составляет 10 м. Устройства этого класса наиболее распространены. Большинство беспроводных аксессуаров относятся именно к этой категории.
  • 3-й класс. Дальность действия - 1 метр. Такие приемники ставят в игровые консоли или в некоторые гарнитуры, когда нет смысла отдалять передатчик и приемник друг от друга.

Система беспроводной передачи данных на базе технологии Bluetooth очень удобна для связи устройств. Себестоимость чипов довольно низкая, поэтому оснащение оборудования функцией беспроводного подключения не слишком отражается на повышении цены на него.

Wi-Fi

Наряду с Bluetooth технология Wi-Fi получила такое же повсеместное распространение в области беспроводных коммуникационных технологий. Однако популярность к ней пришла не сразу. Разработки технологии Wi-Fi начались еще в 80-х годах, но окончательный вариант представили только в 1997 году. Компания Apple решила использовать новую опцию на своих ноутбуках. Так появились первые сетевые карты в iBook.

Принцип действия технологии Wi-Fi следующий: в аппарат встраивается чип, который может дать надежную беспроводную синхронизацию с другим таким же чипом. Если устройств больше, чем два, тогда необходимо использовать точку доступа.

Точка доступа Wi-Fi - это беспроводной аналог стационарного роутера. В отличие от последнего, подключение осуществляется без участия проводов, посредством радиоволн. При этом появляется возможность подключить сразу несколько устройств. Не стоит забывать, что при использовании большого количества девайсов скорость передачи данных будет значительно снижена. Для защиты данных сети Wi-Fi точки доступа защищают шифрованием. Без введения пароля к такому источнику данных будет не подключиться.

Первый стандарт технологии Wi-Fi был принят в 1997 году, но повсеместного распространения он так и не получил, так как скорость передачи данных была слишком низкая. Позже появились стандарты 802,11a и 802,11b. Первый давал скорость передачи в 54 Мб/с, но работал на частоте 5 ГГц, которая не везде разрешена. Второй вариант позволял сетям передавать данные на максимальной скорости 11 Мб/с, чего было недостаточно. Тогда появился стандарт 802,11g. Он объединил достоинства предыдущих вариантов, обеспечивая достаточно высокую скорость при рабочей частоте 2,4 ГГц. Стандарт 802,11y является аналогом 802,11g, отличается большим расстоянием действия сетей (до 5 км на открытом пространстве).

LTE

Данный стандарт в настоящее время является наиболее перспективным наряду с другими глобальными сетями. Широкополосный мобильный доступ дает наивысшую скорость беспроводной пакетной передачи данных. В отношении полосы рабочих частот все неоднозначно. Стандарт LTE очень гибкий, сети могут базироваться в частотном диапазоне от 1,4 до 20 МГц.

Дальность действия сетей зависит от высоты расположения базовой станции и может достигать 100 км. Возможность подключения к сетям предоставляется большому количеству гаджетов: смартфонам, планшетам, ноутбукам, игровым консолям и другим устройствам, которые поддерживают данный стандарт. В аппаратах должен быть встроен модуль LTE, который работает совместно с имеющимися стандартами GSM и 3G. В случае обрыва связи LTE девайс переключится на имеющийся доступ к сетям 3G или GSM без обрыва подключения.

В отношении скорости передачи данных можно отметить следующее: по сравнению с сетями 3G она повысилась в несколько раз и достигла отметки 20 МБит/с. Внедрение большого количества гаджетов, оборудованных LTE-модулями, обеспечивает спрос на данную технологию. Устанавливаются новые базовые станции, которые обеспечивают даже отдаленные от мегаполисов населенные пункты.

Рассмотрим принцип действия сетей четвертого поколения. Технология беспроводной пакетной передачи данных осуществляется посредством протокола IP. Для быстрой и стабильной синхронизации между базовой станцией и мобильной станцией формируется как частотный, так и временный дуплекс. За счет большого количества комбинаций парных частотных диапазонов возможно широкополосное подключение абонентов.

Распространение сетей LTE снизило тарифы на пользование мобильной связью. Широкий диапазон действия сети позволяет операторам экономить на дорогостоящем оборудовании.

Устройства передачи данных

В своей повседневной жизни мы окружены устройствами, которые функционируют на базе беспроводных технологий передачи данных. Причем каждое устройство имеет несколько модулей активности тех или иных стандартов. Пример: классический смартфон использует сети GSM, 3G, LTE для передачи пакетных и голосовых данных, Wi-Fi для выхода в интернет через точку доступа, Bluetooth для синхронизации девайса с аксессуарами.

Рассмотрим самые популярные устройства беспроводной передачи данных, которые получили повсеместное распространение:

  1. Wi-Fi-роутер. Данное устройство способно обеспечивать доступом к интернету несколько девайсов. Сам аппарат синхронизирован с источником интернета проводным путем или при помощи сим-карты оператора сотовых сетей.
  2. Смартфон. Универсальное средство связи, которое дает возможность передавать голосовую информацию, отправлять короткие текстовые сообщения, получать доступ к интернету и синхронизироваться с беспроводными или проводными аксессуарами.
  3. Планшетный компьютер. Функционально может быть идентичен смартфону. Отличительной особенностью является большой экран, благодаря которому использование гаджета становится более комфортным для определенных видов работ.
  4. Персональный компьютер. Полноценный стационарный аппарат со встроенной операционной системой, позволяющий работать в сетях интернет, в том числе беспроводных. Беспроводная передача данных на компьютер от точки доступа, как правило, осуществляется через Wi-Fi-адаптер, который подключается через разъем USB.
  5. Ноутбук. Уменьшенная версия персонального компьютера. В большинстве ноутбуков есть встроенный Bluetooth-адаптер и Wi-Fi-модуль, что позволяет выполнять синхронизацию для получения доступа к интернету, а также подключения беспроводных аксессуаров без дополнительных USB-адаптеров.
  6. Беспроводные аксессуары и периферийные устройства. К данной категории относятся беспроводные колонки, наушники, гарнитуры, мыши, клавиатуры и другие популярные аксессуары, которые подключаются к девайсам или компьютерам.
  7. Телевизор или Smart-TV. Телевизор с операционной системой функционально напоминает компьютер, поэтому наличие встроенных беспроводных модулей для него является необходимостью.
  8. Игровая приставка. Для установки софта у данного гаджета предусмотрен беспроводной выход в интернет. Игровые консоли синхронизированы с устройством по технологии Bluetooth.
  9. Беспроводное оборудование "Умный дом". Очень сложная и многосторонняя система, управление которой осуществляется беспроводным способом. Все датчики и элементы оборудования оснащены специальными модулями для передачи сигналов.

С усовершенствованием беспроводных технологий на смену старым девайсам постоянно приходят новые аппараты, которые функционально более эффективны и практичны. Оборудование беспроводной передачи данных быстро видоизменяется и модифицируется.

Перспективы использования беспроводных сетей

В настоящее время прослеживается тенденция замены проводных элементов оборудования более новыми беспроводными вариантами. Это намного удобнее не только по причине мобильности аппаратов, но и с точки зрения удобства в использовании.

Производство беспроводного оборудования позволит не только внедрять новейшие системы в мир девайсов для связи, но и оборудовать по последнему слову техники жилье стандартного среднестатистического жителя любого населенного пункта. В настоящее время такое могут позволить себе только люди с высоким уровнем достатка, проживающие в мегаполисах.

В области беспроводных радиокоммуникаций ведутся постоянные исследования, результатом которых являются инновационные технологии, которые отличаются от предшественников своей большей продуктивностью, сниженной энергозатратой и практичностью использования. Результатом таких исследований является появление нового оборудования. Производители всегда заинтересованы в выпуске продукции, которая будет соответствовать инновационным технологиям.

Более продуктивные точки доступа и мощные базовые станции позволят повсеместно использовать новые технологии на крупных предприятиях. Управление оборудованием можно будет вести дистанционно. В области образования беспроводные технологии способны облегчить процесс обучения и контроля. В некоторых школах уже начинают внедрять процесс мобильного образования. Заключается он в удаленном обучении посредством видеосвязи через интернет. Перечисленные примеры являются лишь начальным шагом перехода развития общества на новую ступень, которая будет построена на базе беспроводных технологий.

Преимущества беспроводной синхронизации

Если сравнивать проводную и беспроводную передачу данных, можно выявить множество преимуществ последней:

  • не мешают провода;
  • высокая скорость передачи данных;
  • практичность и быстрота подключения;
  • мобильность использования оборудования;
  • исключен износ или обрыв связи;
  • есть возможность использования нескольких вариантов беспроводного подключения в одном девайсе;
  • возможность подключения сразу нескольких устройств к точке доступа интернета.

Наряду с этим есть и некоторые недостатки:

  • излучение большого количества аппаратов может отрицательно сказаться на здоровье человека;
  • при близком расположении различного беспроводного оборудования есть вероятность возникновения помех и сбоев в связи.

Причины массовой распространенности беспроводных сетей очевидны. В необходимости всегда оставаться на связи нуждается любой среднестатистический член современного общества.

В заключение

Беспроводные технологии предоставили возможность повсеместного внедрения телекоммуникационного оборудования, которое массово используется во всех странах мира. Постоянные доработки и новые открытия в области беспроводных коммуникаций дают нам все больший уровень комфорта, а обустройство быта при помощи инновационных приборов становится все более доступным для большинства людей.